Exploratory Data Analysis On Iris Dataset

1736876772.png

Written by Aayush Saini · 2 minute read · Jun 21, 2020 . Machine Learning, 5

Hi Everyone, We are Back with a New Project. In this Project, We Use Iris Dataset for Exploratory Data Analysis.

Necessary Library for this project,

  1. Pandas
  2. Numpy
  3. Seaborn
  4. Matplotlib

These Libraries are Enough for EDA. Now Let's Start

 

 


import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
#Load Datasets
iris = pd.read_csv('iris.csv')
#check Shape of this project
print(iris.shape)
#Check Columns in this project
print(iris.columns)

 

#Check Species of Iris Datasets
print("iris['species'].value_counts()")

 

#Check Scatter Plot Between Sepal_length Vs Sepal_width
iris.plot(kind='scatter', x='sepal_length', y='sepal_width')
plt.show()
iris1



 

Create a Whitegrid Scatter Plot Between sepal_leangth Vs Sepal_width , Hue= species


sns.set_style('whitegrid')
sns.FacetGrid(iris, hue='species',size=4) \
    .map(plt.scatter, 'sepal_length', 'sepal_width') \
    .add_legend()
plt.show()
iris2

 

Now We Show a Pairplot


plt.close()
sns.set_style('whitegrid')
sns.pairplot(iris,hue='species',size=3)
plt.show()
iris3
sns.FacetGrid(iris, hue='species', size=5) \ .map(sns.distplot, 'sepal_width') \ .add_legend() plt.show() Output:- iris4

PDF and CDF


counts, bin_edges = np.histogram(iris_setosa['petal_length'], bins=10, density=True)
pdf = counts/(sum(counts))
print(pdf)
print(bin_edges)

cdf = np.cumsum(pdf)
plt.plot(bin_edges[1:],pdf)
plt.plot(bin_edges[1:], cdf)

counts, bin_edges = np.histogram(iris_setosa['petal_length'], bins=20, density=True)
pdf = counts/(sum(counts))
plt.plot(bin_edges[1:], pdf)
plt.show()
iris5
 

Box Plot


sns.boxplot(x='species',y='petal_length',data=iris)
plt.showow()
iris6
 

sns.violinplot(x='species',y='petal_length',data=iris,size=8)
plt.show()
iris7
 

Jointplot


sns.jointplot(x='petal_length',y='petal_width',data=iris_setosa,kind='kde')
plt.show()
iris8



Thanks for Reading Share this Post 

Download Source Code 


 

Share   Share